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I. INTRODUCTION 

In almost all modem cosmological models, galaxies, clusters, and all large-scale struc- 

tures develop through the gravitational instability of small-amplitude, seed density fluc- 

tuations. In most of these models cold dark matter is an important constituent of the 

total mass density of the Universe. There are two basic types of seed density fluctu- 

ations, curvature and isocurvature,’ and in general, both are expected to be produced 

in the early Universe. By definition, the total energy density in an isocurvature fluc- 

tuation is constant; the fluctuation is in the relative contribution to the total energy 

density of different components in a multicomponent system. Important examples of 

this type are the fluctuations induced in the baryons by some dissipative process in a 

Universe containing both baryons and dark matter, and topological or non-topological 

field configurations like cosmic strings or textures. While the amplitude of either type 

of fluctuation on large scales is strongly restricted by microwave background anisotropy 

constraints, the amplitude of small-scale fluctuations can be large, even non-linear, at 

the epoch of last scattering. The spectrum of small-scale fluctuations do not necessarily 

have to reflect the shape of the power spectrum of the primordial fluctuations generated 

at the inflationary epoch, since the small-scale fluctuations may well be generated later, 

e.g., during various cosmological phase transitions. 

In this paper we are interested in isocurvature fluctuations that enter the horizon be- 

fore the temperature of equal energy densities of matter and radiation, T~Q = 5.5 nob* eV 

[2]. We will consider scales much smaller than the horizon, so the radiation energy density 

should be homogeneous. 

It is well known [3] that the growth of small-amplitude isothermal fluctuations is 

suppressed by the cosmological expansion, and the fluctuations do not grow until after 

‘The division of fluctuations into curvature and isocurvature is strictly true only outside the Hubble 
radius [l]. - 
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the equality epoch. However, this is true only in linear theory. The self gravity of large- 

amplitude, non-linear fluctuations may become important before TEQ, and consequently 

they collapse earlier. Therefore they are capable of producing very dense objects after 

they separate out from the general expansion and virialize. 

We refer to these isothermal fluctuations as “clumps.“* Let us specify the density of 

a dark-matter clump as 

where @ is not necessarily small. For example, “typical” axion miniclusters [4] will have 

@ N 1. In Ref. [6] it was found that accounting for non-linear effects in the evolution of 

axions at the crucial epoch when the axion mass switches on can lead to considerably 

larger density in many miniclusters, with @ in the range 1 to 104. Dark-matter clumps 

seeded by wakes induced by cosmic strings or by textures also will have Cp N 1 [5]. Seeded 

clumps we particularly interesting in the case of WIMP dark matter 

It was pointed out in Ref. [6] that the final virialized density in a clump has to scale as 

PF N cP4p~~. Because of the dependence upon the fourth power of a, even a small increase 

in Qi is very important. For the same reason, the final density can be sensitive to the 

details of the evolution of the clump in the radiation-dominated era. To our knowledge, 

a detailed study of the non-linear evolution of large-amplitude isothermal fluctuations 

has never been performed. However, it is very important in various phenomenological 

implications including both direct and non-direct dark matter searches. In this paper we 

consider this problem. 

The clumpiness of the dark matter has important implicationsfor attempts to detect 

dark matter. Clearly the signal in direct detection experiments for dark matter is pro- 

portional to the dark matter density. For the rare direct encounter with a clump, there 

*Since the clumps m a be very dense compared to the background, we do not refer to them as y 
“perturbations.” -. 
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could be a huge amplification of the signal. However, if the clumpiness is too high, the 

flux of unclumped dark matter will be too small for a reasonable detection rate. The rate 

of WIMP annihilation contributing to the y-ray background [7,8] is proportional to the 

density as well. In the case of clumped dark matter, there will be stronger constraints 

on dark matter from indirect searches. In very dense axion clumps, Bose star formation 

becomes possible [9] (clumps with <p N 30 already satisfy the critical condition for this 

[S]), which in turn can lead to the formation of radio sources [lo]. Another possible 

manifestation of high density clumps is the phenomenon of microlensing. 

To study the structure and evolution of high density clumps, a full 3-dimensional 

numerical simulation is needed. However, for an isolated clump some relevant physical 

information can be extracted from a l-dimensional spherical model. The spherical model 

proved useful in studies of the gravitational non-linear evolution in the epoch of matter 

domination when it is possible to find exact analytic solutions [ll]. In the present paper 

we generalize this model to include radiation. Although there are no analytic solutions, 

the result turns out to be very simple: The final density in a virialized clump is PF z 

140 @(cp + 1)p EQ in the whole range of possible values of Q5, both for Qp >> 1 and for 

a < 1. 

II. A SPHERICAL MODEL 

Let us consider a spherical region of radius r containing an overdensity of pressureless 

matter in an expanding Universe. In a spatially flat Universe, every overdense region 

eventually reaches some maximum size and re-collapses. The total mass of matter in the 

region inside r, Mror, is an integral of the motion so long as the region expands. Since we 

will consider scales much smaller than the Hubble radius, we can consider the radiation 
- 
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to be homogeneous, with its time evolution determined by the general expansion of the 

Universe, and not by the local conditions. 

The equation of motion for the radius of the region is 

. . 8?rG 
?-= 

GMTOT 
-y-m - r2 . (2-l) 

It is convenient to change to the conformal time coordinate, dq = &/a(t), and then to 

rewrite this equation of motion in the comoving reference frame, r = u(q)R,t(q)<, where 

< is the comoving label of a given shell and R&q) measures the deviation of the shell 

motion from the uniform Hubble flow of the background Friedmann Universe. In what 

follows we shall omit the subscript [ on R(q), but it should be understood that there is 

a separate evolution for each shell. 

We shall assume that the scale factor a(q) satisfies the Einstein equations for an 

i-220 = 1 Universe filled with radiation and pressureless matter: 

aR 
87rG 

= +PM + pR)a4 ; aN = ypua3, P-2) 

where prime denotes d/dq. We parametrize the radiation and matter energy densities as, 

PR = pEQ(aEQ/a)4 and PM = &~(eEo/c)~. The solution to the background equations, 

Eqs. (2.2), is 

a(d = aEQPW71=) + WI*)*1 Y 

where q:* = 2?rGpEQaEQ* j3. 

The equation of motion [Eq. (2.1)] in terms of conformal time is 

ag’ + a’R’ + GMTOT -- 
.<3R2 

(2.3) 

(2-4 

The radiation energy density does not enter this equation explicitly, but its effect is 

encoded in the evolution of the scale factor. We also parametrize the total mass of 
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matter inside the shell in terms of the excess over the homogeneous background, denoted 

as cP(<) G 6p~/p~. The total mass within the region is 

MTOT = 
4w YjvEQd[l + @(t)]t3. 

Changing from q to z = a/aEQ as the independent variable, we finally obtain 

z(1 + z) ~+(l+;x)~+;($g-R)=O. 

(2.5) 

P-6) 

This equation reduces to the Meszaros equation [3] in the limit of small deviation of 

the shell motion from the general cosmological expansion, R = 1 - 6 and 6 < 1, if we 

assume no excess in total mass of the matter, i.e., (9 = 0, 

The latter is hypergeometric equation, and its growing mode is 6 = Ss( 1+3x/2), implying 

the well known result that the growth of small fluctuations is significant only after the 

Universe becomes matter dominated. 

We have solved Eq. (2.6) numerically, assuming R(Q) = 1 at some early time, x0 < 1. 

Note that at small x, the second derivative in Eq. (2.6) can be neglected, and the solution 

with initial conditions fixed at x0 = 0 is R = (1 - 3@x/2)‘j3 zz! 1 - $x/2, where the 

expansion is justified since the solution is valid only at small x. Actually, this is the 

separatrix, i.e., independently of the initial value of R’, all solutions tend to it (provided 

IO < 1). The results of numerical integration of Eq. (2.6) proved to be insensitive to 

R’( x0) already at x0@ < 10 -3. For several different values of <p they are shown in Fig. 1. 

It is possible to find an analytic approximation to R(x) as a power series in x to any 

given order. To third order it is 

(8Qr3 - <p2)i3 
144 * (2.8) 
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Fig. 1: Numerical solutions to Eq. (2.6) for several different values of +. The second-order fit is Fig. 1: Numerical solutions to Eq. (2.6) for several different values of +. The second-order fit is 
shown by the dotted line. shown by the dotted line. 

The first three terms in this decomposition provide a good practical fit to the solution. The first three terms in this decomposition provide a good practical fit to the solution. 

This fit is shown in Fig. 1 by the dotted line. The last term in Eq. (2.8) shows that the This fit is shown in Fig. 1 by the dotted line. The last term in Eq. (2.8) shows that the 

solution is not simply a function of the product Cpx. solution is not simply a function of the product Cpx. 

Our main goal is to find the parameters of the fluctuation, i.e., its radius and density, 

at the moment when the fluctuation turns around. For later times the assumption of 

spherical symmetry breaks down; however, we can assume that the radius of a virialized 

Our main goal is to find the parameters of the fluctuation, i.e., its radius and density, 

at the moment when the fluctuation turns around. For later times the assumption of 

spherical symmetry breaks down; however, we can assume that the radius of a virialized 

gravitationally bound object will be one-half of the turnaround radius, and the density 

inside the object will be eight times larger than the density at turnaround 111). The 

turnaround time, defined by + = 0, in coordinates of Eq. (2.6) is the solution to the 

equation R + x dR jdx = 0. Up to order 0(x*) the function R only depends upon the _ 
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Fig. 2: The coefficient C, in Elq. (2.9) as a function of ip. 

product 9z, so to this order in x the scale factor at turnaround will be given by XTA = 

const/<P and to the same order in x, RrA = const. The matter density of a fluctuation at 

turnaround is PTA = (1/4nr*)dM/dr, with r = RTAXTA<, so it is appropriate to represent 

the parameters at turnaround as 

XTA = cz /a; tkA = C&Q $f(l + a)<3 . (2.9) 

We expect only a weak dependence of C, and CP upon Cp, since higher order corrections 

are small. Results of a numerical integration for C, and CP are shown in Fig. 2 and Fig. 

3 respectively. These figures demonstrate that for practical applications we can consider 

C, and CP to be constants in entire range of possible values of Cp, both 9 >> 1 and ip << 1. 

Let us compare our results to predictions of a standard spherical model, which is 

valid for the matter-dominated epoch, i.e., at small a. The spherical model predicts 

PTA/PB = 97r2j16 for the density contrast at turnaround, where ps is the background 

density [l 11. Using Fig. 2 we can extract the corresponding values of pn and then calculate 
- 
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Fig. 3: The coefficient C,, in Eq. (2.9) as a function of Ip. The dashed line is the prediction of the 

standard spherical model (matter without radiation). 

the standard spherical model prediction for CP. This is presented in Fig. 3 by the dashed 

line. Both dashed and solid lines coincide in the limit of small Cp, as they must. 

III. APPLICATIONS 

With the function a(<) in the general form we have assumed, the effective radius 

after virialization for each shell of a given label c will be half the turnaround radius of 

the shell.3 Using Eq. (2.9) we obtain for the final density profile in a virialized object 

PF = l‘@EQ 

where we have set CP - 17. For the core density, this formula gives pF = 140 @~(<Po + 

l)p~~, where Cpc = e(O). The numerical value of the density at equality is PEQ z 

3Strictly speaking this is not always true, but for the practical applications we will consider below 
the approximation should be reasonable. -. 
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3 X lo-l6 (Rh2)4g cm- 3. Now let us turn to a few specific examples. 

A. Axion miniclusters 

Fluctuations in the density of axions can be very high, possibly spanning the range 

1 5 Cp 2 lo4 [6,12]. E ven with + as small as 1, the density in miniclusters which form 

out of these fluctuations can be as much as lOlo times larger than the local galactic halo 

density [4]. Using Eq. (3.1), we obtain pF - 9 x 10-14n4h8 g crne3 for @ = 1. With 

<P >> 1 this result must be multiplied by (P4/2. 

The typical mass of an axion minicluster corresponds to the total mass in axions 

within the horizon at T - 1 GeV when the inverse axion mass is equal to the Hubble 

length: it&o - 10-gMO. The present probability of a direct encounter with a minicluster 

is small, the encounter rate is 1 per 30 million years with <P = 1. Although the signal 

in an axion detector [13] f rom a close encounter would be enormous, it might be a long 

wait with a weak signal between encounters if a major fraction of the axions.are part of 

miniclusters. 

There should be some miniclusters with 9 in the range 1O’3 s Cp ;S 1. These collapse 

during the matter-dominated epoch and have a larger radii than those with 9 2 1 

which collapsed in the radiation-dominared epoch, so the probability of an encounter 

with a clump with 0 << 1 can be larger. From the point of view of direct searches, even 

miniclusters with density contrast of order two times the average with respect to the 

galactic halo density are important. Such miniclusters form just prior to the moment 

of galaxy formation and started with @ - lo- 3. For + < 1 the expected time between 

encounters is given in terms of the number density of clumps, n, the geometric cross 

section of the clump 0 - R&,,,, and the virial velocity TJ as 

T = - N ’ PF RCLUMP 1 
n6v @PP, v ’ 

(3.2) 

where pi is the halo density, and R CLUMP/V is the time the Earth spends inside the 
- 
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minicluster. The factor of <P-l appears because the number density of miniclusters with 

+ < 1 is suppressed in our model. A minicluster with Q < 1 would require the initial 

misalignment angle 0 (which is uniformally distributed in the range 0 to 27r) to be finely 

tuned to the mean misalignment angle to an accuracy Se/@ N cP/2. Using Eq. (2.9), we 

finally obtain 

7 = @T@=l = <p - 3 x 107yr. (3.3) 

Note that the miniclusters discussed so far appear if the axion field is uncorreiated 

on scales larger than the Hubble radius at T N 1 GeV. However miniclusters with Cp < 

1 can appear from primordial density fluctuations generated by inflation without the 

suppression factor of * -l. If this is the case, then r N <p* - 3 x lo7 yr. Since Cp would 

be small, this would give a reasonable encounter rate, and the question of formation and 

survival of small-scale clumps within the galaxy is worth further study. 

Another astrophysical outcome of very dense axion clumps can be the possibility of 

“Bose star” formation in axion miniclusters. The Bose-Einstein relaxation time in the 

minicluster due to axion self-interaction is smaller than the present age of the Universe 

with Cp 2 30 (6,9]. 

B. Accretion by a point mass 

The density profile in the halo accreted by a previously formed clump can be calcu- 

lated in the approximation of secondary infall ,onto an excess point mass of mass nt. In 

this case cP(<) = m/M, where M = 4rpEQaEQ3(3 is the mass of the background dark 

matter within the shell with the label <. Substituting this into Eq. (3.1) we find 

pF x 140pEQ(m/!M)3. (3.4) . 

This can be translated into pF as a function of r since M has to be understood as the 

mass of dark matter residing within r. The result is PF oc r-‘j4, the same power law one - 
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usually obtains for secondary infall in the matter-dominated era [14]. However, Eq. (3.4) 

is valid regardless of the time when collapse actually occurs. 

C. Cosmic strings 

We can apply Eq. (3.4) f or clumps of dark matter seeded by loops of cosmic strings, 

so long as the peculiar velocity of a loop is sufficiently small. Since the string loop is 

not a point object, this formula breaks down in the region of small M. Namely, when 

the given shell turns around at XTA x O.i’M/m, the loop size 1s has to be smaller than 

the physical radius of the shell, rr~ = rrARrA<~no, for Eq. (3.4) to be valid. This 

gives the restriction M 2 3m3/2p-3/4pEql14 z MC, where m = ~1s. We can consider 

MC as the mass of the core region. The corresponding maximum density which can 

be achieved in the core is pc - lS@&/Mc. This value of the core density could 

be many orders of magnitude larger than the density at equality. However, as we see 

from Eq. (3.4), pF is much greater than PEQ only in the case when the mass of the 

string loop is larger than the mass of the accreted dark matter. Consequently, with 

gradual loop decay due to emission of gravitational radiation, the dark matter clump 

will adiabatically expand and diminish in density. This process of clump expansion 411 

continue until1 m ;5 M. Since in the gravitational field the product Tm is an adiabatic 

invariant for each dark matter particle, where r is the effective radius of the orbit, we 

conclude that in any clump for which M < m initially, the present density will have the 

same order of magnitude, p - 102p~o. Dark-matter clumps seeded by wakes induced by 

long segments of moving cosmic strings or by textures also will have @ - 1 (see [5]), and 

correspondingly the same virialized density, p - 102pso. While this density is sufficiently 

high to be significant in applications like annihilation of dark matter particles, it is too 
. 

small to cause microlensing, as we show below. 

Cold dark matter accretion onto string loops both in the matter and radiation dom- 
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inated era was also considered in Ref. [15], h owever, only in the linearized limit of Eq. 

(2.6), i.e., Eq. (2.7). 

D. WIMP annihilation 

In the case where the dark-matter particle species is a stable weakly interacting 

massive particle (WIMP) such as a very massive neutrino or a super-symmetric particle 

(photino, higgsino, or scalar neutrino), the WIMPS can annihilate, contributing to the 

r-ray flux. This places severe constraints on the dark-matter density near the center of 

the galaxy [7,8]. Clumped dark-matter annihilation is even more efficient, and places a 

very strong limit on the clumpines as a function of the WIMP properties [5]. 

For the y-ray flux on Earth from WIMP annihilation in the clump, we can write 

I N (4PM 

’ - 47rr$m$ ’ (3.5) 

where rg is the distance from the Earth to the clump (r@ z 8.5 kpc is the distance to the 

center of the Galaxy), rnx is the particle mass, and M is the mass of the clump. Since 

the particles are non-relativistic, both in the clumps and at the epoch of cosmological 

freeze-out of the WIMPS, the thermal average of the cross-section in the Eq. (3.5) is 

directly related to the cosmological abundance [16]: 

(au) X 4 i,$” cm%ec-l . (3.6) 

If we consider a large region of (possibly) clumpy dark matter, like the galactic core 

or spheroid, we must sum up the fluxes from each individual clump. As a result, instead 

of M in Eq. (3.5) we have to substitute <Mtot, where { is the mass fraction of all clumps 

to the total mass M,,, in the region. For example, using p N 102p~o we obtain for the 

central spheroid (M,,, x 108M,) 

4 z (0; h6mz cmW2sec-l , (3.7) 
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where mm E mx/20 GeV. This has to be compared to the observed upper limit to the 

T-ray flux in the direction of the Galactic center [7], I7 x 4 x 10-7cm-2sec’1. 

E. Gravitational microlensing 

Two conditions must be satisfied for the clump to cause gravitational microlensing 

[17]. First, the mass of the clump has to be in a range near O.lM@. Second, the physical 

radius of the clump has to be smaller than the Einstein ring radius, Rs = 2dm 

where d is the effective distance to the lens (typically d rv 20 kpc). The second condition 

restricts the density of the minicluster to be p 2 107pso/fi, where M-1 E M/O.lM,. 

If the lensing object is a clump of non-interacting cold dark matter, it has to be formed 

from a density fluctuation with Cp 2 20. 

Dark matter clumps seeded by string loops or textures, which were considered in Ref. 

[5], are in the appropriate mass range; however, they have 9 N 1. Axion miniclusters can 

have <p 2 20; however, they are too light. While it is possible to invent models where 

both conditions are met for some of the clumps (one example could be an axion model 

with an extremely small, but non-zero, value for the u-quark mass), it is hardly likely 

that a substantial amount of the dark matter has evolved into clumps capable of lensing. 

On the other hand, anticipating significant numbers of microlensing events (for the first 

positive reports see Ref. [18]) in the future, it is not excluded that some of them could 

be caused by the clumps in such classes of models (especially if collisional relaxation is 

significant). The corresponding light curve will be different from the MACHO event since * 

clumps are extended objects. 

When our paper was almost completed we became aware of the paper Ref. [19] where 

Eq. (2.6) was studied in details; however, again for the case which corresponds to G < 1. 

It is a pleasure to thank S. Colombi, A. Stebbins and R. Caldwell for useful discussions. 
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